Prof. Walzer         Geodynamik und Geophysik

Prof. Uwe Walzer
Prof. Uwe Walzer
Foto: Andreas Hoffmann

 

 

Anschrift:

Prof. U. Walzer
Friedrich-Schiller-Universität Jena
Chem.- Geowiss. Fakultät
Humboldtstr. 11
D-07743 Jena
Deutschland

 

 ++49-(0)3641 - 9-48683
 ++49-(0)3641 - 9-48002

E-Mail:   u.walzer[at]uni-jena.de

  • Lebenslauf
    • seit 1992 Professor für Geophysik an der Friedrich-Schiller-Universität Jena
    • Eintrag ins "Who'sWho in the World" seit 2002, S. 2300, Marquis Who'sWho, USA
    • 1999/2000: Los Alamos National Laboratory, NM, USA
    • 1991: Dr. rer. nat. habil.
    • 1982: Dr. sc. nat.
    • 1969: Promotion zum Dr. rer. nat. (summa cum laude)
    • 1968-1991: Wissenschaftlicher Mitarbeiter am Institutsteil Jena des Zentralinstituts für Physik der Erde
    • 1964-1968: Wissenschaftlicher Mitarbeiter am Institut für theoretische Physik und Geophysik in Freiberg
    • 1959-1964: Studium der Geophysik in Leipzig und Freiberg
  • Mitgliedschaften
    • Deutsche Geophysikalische Gesellschaft
    • Europäische Gesellschaft für Geowissenschaften
    • Europäische Vereiningung für Geochemie
.
.
Foto: Uwe Walzer

Comparison of our computed mantle-crust evolution model (panel a) with the observed global detrital zircon U-Pb age distribution and the low-frequency Model 2 of Puetz and Condie (2022). Time series for the 3900-0 Ma interval, binned at 10-Ma intervals. Panel b: Bandpass-filtered U-Pb age distribution from Combined-DB. Panel c: Low frequency model. Correlation coefficient = 0.788. This figure is from the paper U. Walzer, R. Hendel. Mantle evolution and continental growth eventspdf, 35 kb. Earth-Science Reviews, 104130, 2022.

.
.
Grafik: Uwe Walzer

Present-day distribution of the continents (red), oceanic lithosphere (yellow), and oceanic plateaus (black dots) for run 498. The quantities rn = 0.5, σy = 120 MPa, k = 5.0 W/(m·K), and f3 = 0.995 were kept constant. The arrows show the present-day creep velocities at the surface.This figure is from the paper U. Walzer, R. Hendel. Mantle evolution and continental growth eventspdf, 35 kb. Earth-Science Reviews, 104130, 2022.

.
.
Foto: U. Walzer

The result of chemical evolution of the silicate spherical shell of the Earth, using the parameters σy = 110 MPa and rn = −0.5 (cf. Sect. 2), for the present day. We assume a modernized reservoir theory (cf. [4, 14, 23]). Strongly depleted portions of the mantle which include more than 50% depleted
MORB mantle are displayed by yellow areas. Enriched portions of the mantle with less than 50% depleted MORB mantle are orange-colored. In general, the yellow-orange boundary does not correspond to a discontinuity of the abundances of incompatible elements. The cross sections through the continents are red. This figure is from the paper U. Walzer and R. Hendel. Predictability of Rayleigh number and continental growth evolution in a dynamic model of the Earth's mantle.pdf, 2 mb · en In S. Wagner, M. Steinmetz, A. Bode, and M. Brehm, editors, High Perf. Comp. Sci. Engng. Garching/Munich 2007, pp. 585-600. Berlin, 2009.
Further results on the distribution and miscibility of geochemical reservoirs can be found in:
U. Walzer, R. Hendel. A geodynamic model of the evolution of Earth's chemical mantle reservoirspdf, 3 mb · en. In W. E. Nagel, D. B. Kröner, and M. M. Resch, editors, High Perf. Comp. Sci. Engng. '10 (HLRS), pp. 573-592. Berlin, 2011.

.
.
Foto: U. Walzer

A comparison of six equatorial sections showing the present-time state of the chemical evolution of incompatible elements of the Earth’s mantle. We use a modernized reservoir theory. Cf. Section 1. The depleted MORB mantle (DMM) and a mantle which is rich in incompatible elements, yet, are strongly intermixed. Strongly depleted parts of the mantle which include more than 50% DMM are represented by yellow areas. Relatively rich mantle parts with less than 50% DMM are orange-colored. In general, the yellow-orange boundary does not correspond to a discontinuity of the abundances of U,Th,K, etc. The
cross sections through the continents are red. Black dots represent the oceanic plateaus. The yield stress is 120 MPa, the viscosity-level parameter is -0.50. 

This figure is from the paper: U. Walzer, R. Hendel. A Geodynamic Model of the Evolution of the Earth's Chemical Mantle Reservoirs.pdf, 3 mb · en In W. E. Nagel, D. B. Kröner, and M. M. Resch, editors, High Perf. Comp. Sci. Engng. '10 (HLRS), pages 573-592. Berlin, 2011.