1

Draft

Zentralinstitut für Physik der Erde, Institutteil Jena

Structural Classification of AB-Type Binary Compounds

By

U. Walzer

At first, a review is given on how structure maps for the prediction of the space group and structure type of AB-type binary compounds can be designed with the help of semiempirical theories. Then, two ab-initio pseudopotential theories are compared in detail. The all-electron single-particle equation and the spin-density-functional formalism form the starting point for both theories. While transferability is aimed at in both theories, the conditions imposed differ in some respects. Theory A uses the Schrödinger equation as starting point. The crossing points of a screened pseudopotential are employed as characteristic quantities. The structure energy is dominated by s-p electrons, even in the case of the compounds of two transition metals. Theory B is based on the Dirac equations and takes into account spin–orbit effects which are relevant for heavier elements. The coordinates of the minima of the bare-ion potentials serve as characteristic radii and energies. In both cases, a good separation of the structure types is achieved. For theory B, in addition, a few predictions concerning lattice constant a and the melting temperature are represented graphically.

1. Introduction

The present paper is concerned with attempts to design structure maps, i.e. two-dimensional diagrams on the axes of which certain empirical or theoretically computed physical quantities are plotted and in which the structure types and space groups of the crystals can be topologically separated. Only those crystals may be taken which are in equilibrium under the same fixed temperature and pressure conditions. If the symbols representing the crystal structures cluster entirely or partly in separate domains, one may hope to be able to predict the structure for substances that are still unknown from the properties of the atomic constituents.

In most cases, two physical quantities have been employed for designing the aforementioned plots, e.g. the difference of electronegativity and the difference of a geometrical

1) Burgweg 11, O-6900 Jena, F.R. Germany.
quantity of the atom. However, there are also exceptions: Pettifor [1], for example, tries to
define the chemical elements only by one quantity. He does not classify them according to
the number of protons, but according to the Mendeleev number introduced by him, a new
atomic number which is not in agreement with the conventional atomic number of the
elements. Now he plots the symbols for the structure types of AB-type binary compounds
in a diagram whose axes are formed by the new atomic number for constituent A and by
the new atomic number for constituent B. The Pettifor plot indeed shows a good separation
of the compounds into clusters, however, the choice of some of these new atomic numbers
appears to be somewhat arbitrary.

A deviation to the other side is made by Villars [2] who constructed three-dimensional
plots on the basis of three quantities: He employed the electronegativity difference ΔX, the
size difference ΔY, and the average number of valence electrons per atom ΔZ. His structural
classifications are very distinct and good, although the work with sixteen two-dimensional
plots — i.e. practically three-dimensional diagrams — is not very handy. As is well known,
the four types of chemical bonding, i.e. metallic, Van der Waals, ionic, and covalent bonding,
mostly occur in a mixed form, i.e. the percentages with which they contribute to total
bonding differ from one another. This is in conformity with the empirical finding that band
effects, atomic radii, electronegativity, and hybridization are well suited for making the
space groups of the crystals in the structure maps separable. Frequently, the discussion is
not very clear in individual points, because different authors define the quantities, e.g. the
electronegativity, in different ways. One of the earliest scales of electronegativity used to
the present day is that by Alfred and Rochow [3]. Pauling’s scale [4] is more widely used.
It is based for the major part on molecular heats of formation. In contrast to this, the
electronegativity by Phillips [5] is based on fully hybridized crystalline sp³ bonds. St. John
and Bloch [6] use for nontransition elements an electronegativity which is numerically
situated between the values from [4] and [5]. It is computed from the Bloch-Simons orbital
radii and has, thus, been derived from quantum variables. It is the first one among these
quantities which is largely independent of the molecular or crystalline environment. It might
be worthwhile to mention the stages of development preceding this breakthrough: Moore
and Pearson [7, 8] at first confined themselves to the separation of nonoctet binary
compounds. They used as coordinates the magnitude of the difference of Pauling’s
electronegativity and the average principal quantum number. They also were fairly successful
in the graphical separation of compounds consisting of a transition-metal atom and a
simple-metal atom with N valence electrons, however, with the restriction 3 ≤ N ≤ 6. The
separation according to crystal structures can be seen only in some parts of the graphs.

A similarly possible good separation of the crystal structures was obtained by Shaw [9]
for nonoctet compounds. As dual coordinates, he also used, on the one hand, the
electronegativity difference, on the other hand, however, the quantity

\[\frac{1}{4}(Z_A - Z_B)[\frac{1}{2}(n_A + n_B)]^3, \]

Zᵦ is the atomic number, nᵦ the principal quantum number of the outer orbital of atom A.

A method that is only applicable to fully bonded cubic crystals was developed by Van
Vechten [10] and Phillips [11]. From the bond lengths and dielectric constants of the
compounds, they computed the average covalent energy gap and the average ionic energy
gap. These two quantities served as variables in their structure maps for octet compounds.
Miedema’s [12] parameters \(P_1 = |\Phi_1 - \Phi_2| \) and \(P_2 = |\Phi_1^{1/3} - \Phi_2^{1/3}| \) were successful in the
prediction of the heats of formation of compounds and in the determination of composition-temperature phase diagrams [13]. \(\Phi^j \) is the effective elemental work function, \(\eta^j \) the electron density at the boundary of the Wigner-Seitz atomic cell of atom A.

However, these variables can be used only with moderate success for the separation of the crystal structures.

2. A Comparison

In the following, we will compare two pseudopotential approaches, which are both based on first principles and do not contain any fitting of parameters to experimental data. The first approach, theory A, is the theory by Zunger [14], the second one, theory B, is based on ideas of Hamann et al. [15]. The theoretical and numerical elaboration of the latter theory can be found in [16 to 19]. In both theories, the pseudopotentials have been derived from full-core atom calculations. However, there are certain differences which are to be made evident here by a comparison. In both approaches, an all-electron (ae) single-particle equation and the spin-density-functional formalism [20, 21] are used. There are differences, however, both in the fundamental equation and in the substitution of the potential by a pseudopotential. The potential in the Schrödinger-type equation is separated in both theories into an electron-nuclear attraction potential \(V_{\text{ne}} \) and an interelectron potential \(V_{\text{ee}} \). \(V_{\text{ne}} \) contains, both Coulomb and exchange and correlation screening. In theory A, we have for the effective potential

\[
V_{\text{eff}}^*(r) = V_{\text{ne}}^*(r) + V_{\text{ee}}(r) .
\]

The all-electron equation is

\[
\left[-\frac{\hbar^2}{2m} \nabla^2 + V_{\text{ne}}^*(q_e r + q_v r) + V_{\text{ee}}(r) \right] \varphi_j(r) = \epsilon_j \varphi_j(r) \; ;
\]

where \(q_e \) is the core charge density, \(q_v \) the valence charge density. The eigenstates \(\varphi_j(r) \) must be orthogonal. For the charge density \(\varrho \),

\[
\varrho(r) = \sum_j |\varphi_j(r)|^2 ,
\]

while for theory B we have

\[
\varrho(r) = \sum_j \left[|G_j(r)|^2 + |F_j(r)|^2 \right] .
\]

because here the Schrödinger equation has been substituted by the Dirac equation in its radial form. This is an expedient approach for allowing for the influence of spin–orbit effects, which is important for the computation of the pseudopotential of heavier elements,

\[
\frac{dF_j(r)}{dr} - \frac{\hbar^2}{r} F_j(r) + \left[q_e - V(r) \right] x G_j(r) = 0 ,
\]

\[
\frac{dG_j(r)}{dr} + \frac{\hbar^2}{r} G_j(r) - \left[2 |\sigma^2 + e_j - V(r)| \right] z F_j(r) = 0 ,
\]
where κ is the relativistic quantum number and l the angular momentum quantum number, with

$$\kappa = l \text{ for } j = l - \frac{1}{2},$$
$$\kappa = -(l + 1) \text{ for } j = l + \frac{1}{2},$$

and

$$c = \kappa^{-1} - 137.037 \quad \text{and} \quad h = m = e = 1.$$

For the splitting of the potential in theory B, we have

$$V(r) = \int \frac{q(r')}{|r - r'|} \, dr' + \frac{\delta V_{\text{src}}}{\delta u(r)} + V_{\text{src}}(r). \quad (7)$$

It is, in principle, the same as in theory A. The special dependence of the exchange-correlation energy E_{xc} on ρ of theory B is given in [19]. In theory A, the valence screening V_{src}^pa has the same functional form as the all-electron screening V_{src}^ae but is a functional of the valence pseudo-charge density n. Consequently, the pseudopotential single-particle equation of theory A is

$$\{ -\frac{1}{2} \nabla^2 + V_{\text{src}}^\text{pa}[\rho(t)] + V_{\text{src}}[r, r'] \} \chi_\kappa(t) = \delta_\kappa \chi_\kappa(t) \quad (8)$$

with

$$n(t) = \sum \limits_j |\chi_j(t)|^2 \quad (9)$$

In theory A, the external potential V_{src} is directly replaced by the pseudopotential V_{src} and the transferability is achieved by physical constraints on the pseudo-wave functions $\chi_\kappa(t)$. The atomic pseudopotential thus obtained is almost independent of energy and state. Two conditions imposed on the pseudopotentials in the two theories are in agreement:

Firstly, real and pseudo-valence eigenfunctions are in conformity in a prototype atomic configuration, i.e. $\hat{e}_\kappa = \hat{e}_\kappa$. Secondly, real and pseudo-atomic wave functions are in conformity for radii r which are greater than a chosen core radius r_c.

For theory A alone, a special choice of unitary rotation coefficients $\{ C_{\kappa\kappa}^{l0}(t) \}$ is required:

$$\chi_\kappa(t) = \sum \limits_\nu C_{\kappa\kappa}^{l0}(t) \chi^{\nu}(t). \quad (10)$$

The following considerations serve for the explanation of this formula: the pseudo-wave functions $\{ \chi_\kappa(t) \}$ are the lowest solutions to

$$\{ -\frac{1}{2} \nabla^2 + \epsilon_{\kappa\kappa}(t) \hat{P}_l + l(l + 1)/2 \} \chi_\kappa(t) + \epsilon_{\kappa\kappa}(t) \chi_\kappa(t) = \delta_\kappa \chi_\kappa(t). \quad (11)$$

The variable $\epsilon_{\kappa\kappa}$ denotes the atomic screening potential of the electrostatic interaction between the electrons, \hat{P}_l the exchange term, and $\epsilon_{\kappa\kappa}$ the correlation term. \hat{P}_l is the projection operator. It is required for the computation of the total pseudopotential $V_{\text{src}}(t, r')$ for crystals and other more complicated systems through the superposition of atomic pseudopotentials,

$$V_{\text{src}}(t, r') = \sum \limits_\delta \epsilon_{\kappa\kappa}^{\delta\delta}(t - \delta) \hat{P}_l. \quad (12)$$
The atoms are situated at the lattice points \(R_i \). The real wave functions \(\psi_{n}(r) \) originate from the all-electron equation

\[
\begin{aligned}
\left\{-\frac{1}{2} \nabla^2 - (Z_e + Z_v) \frac{1}{r} + l(l + 1)/2r^2 + v_e[\psi_e(r)] + \psi_v(r)\right\} \\
+ v_e[\psi_e(r)] + v_{el}[\psi_e(r) + \psi_v(r)] \right\} \psi_{n}(r) = \epsilon_n \psi_{n}(r).
\end{aligned}
\]

(12)

Index \(e \) stands for core, \(v \) for valence, \(Z \) is the number of electrons.

In theory B, on the other hand, the additional conditions for establishing the transferability are as follows: thirdly, the integrals from 0 to \(r \) of the real and charge densities are in conformity for each valence state for \(r > r_v \).

Fourthly, for \(r > r_v \) the logarithmic derivatives of the real and pseudo-wave function are in conformity. The same applies also to their first energy derivatives.

In theory B, the definition of the pseudopotential is much more complicated. From (5) and (6), there follows at first approximately a Schrödinger-type equation from which the major wave function component \(G_j(r) \) can be computed. Therefrom, a first-step pseudopotential \(\tilde{\psi}^{(1)} \) is derived, with the singularity near \(r \approx 0 \) being cut off in the screened full-core potential \(\tilde{\psi}^{(1)} \). The computation is performed independently for each angular-momentum quantum state, with

\[
\tilde{\psi}^{(1)} = \tilde{\psi}^{(1)}(1 - \exp[-(r/r_{el})^{3.5}]) + c_j^{(1)} \exp[-(r/r_{el})^{3.5}].
\]

The cut-off radius \(r_{el} \) is not an adjustable parameter. The constant \(c_j^{(1)} \) is determined so that \(E_{el} = E_{el} \) as has already been demanded. After a few further steps (see [17 to 19]), the screened pseudopotential \(\tilde{\psi}_{ij}^{(1)}(r) \) is unscreened by the valence electrons,

\[
\tilde{\psi}_{el}^{(1)}(r) = \tilde{\psi}_{el}^{(1)}(r) - \int \frac{\psi^{(1)}(r)}{|r - r'|} dr - \frac{\delta E_{el}[\psi^{(1)}]}{\delta \psi^{(1)}(r)}.
\]

(13)

This valence unscreening signifies a linearization of the exchange-correlation energy as a function of \(\psi^{(1)} \).

3. Classification

The bare-ion pseudopotentials of theory B which can be numerically computed from (13) will now be graphically represented in a few examples. \(\tilde{\psi}_{el}^{(1)} \) and \(\tilde{\psi}_{el}^{(2)} \) differ above all for heavier elements. This is already the case for iron which most probably has a dominating share in the cores of the terrestrial planets. The strength of the spin-orbit effects results from
as the crossing points of the pseudopotentials of theory A. We will define our characteristic radii and energies (potentials) essentially as the minima of the potentials after theory B, which are reached first coming from the infinite radius \(r \). In this way, these new characteristic quantities are most easily comparable to the electronegativity, i.e. they are approximately linearly correlated with it. Contrary to [14], we will not classify the experimental comparative material, subdividing it into octet, suboctet, and superoctet crystals according to the classical valence-electron concentration. This would of course enable a better separation into separate domains in the plots, however, the assignment of an AB-type binary compound to one of the three categories is sometimes somewhat arbitrary. We have dispensed with this additional distinction in order to remain objective and to have our diagrams plotted without any corrections by the plotter of the computer.

For all chemical elements from hydrogen up to plutonium, we now have computed the bare-ion pseudopotentials as a function of the distance \(r \) from the atom centre for all relevant angular momentum quantum numbers \(l \) and for both spin states. For the purpose of classification, new characteristic quantities were determined from these curves, as far as this was possible,

\[
\begin{align*}
& r_{n_0}, \quad v_{m_0}, \quad \epsilon_{m_0}; \quad r_{n_1}, \quad v_{m_1}, \quad \epsilon_{m_1}; \quad r_{n_2}, \quad v_{m_2}, \quad \epsilon_{m_2}; \quad r_{n_3}, \quad v_{m_3}, \quad \epsilon_{m_3}; \\
& r_{n_2}, \quad v_{m_2}, \quad \epsilon_{m_2}; \quad r_{n_3}, \quad v_{m_3}, \quad \epsilon_{m_3} \\
\end{align*}
\]

(15)

\(r \) is the radius, \(v \) the pseudopotential of the characteristic point. Both are expressed in atomic units. The pertaining genuineness is 1, if the point on the curve represents the first potential minimum that is reached coming from the infinite \(r \), and if this minimum is not situated at \(r = 0 \). If the minimum is at \(r = 0 \), then \(v = 0 \). In this case, the pair of numbers \(r, v \) designates the point of the curve where, simultaneously, \(\frac{d^2v}{dr^2} > 0 \) and the curvature \(k \), coming from infinitely large \(r \), assumes a maximum, with

\[
k = \frac{d^2v}{dr^2} \left[1 + \left(\frac{d\epsilon}{dr} \right)^2 \right]^{-3/2}.
\]

(16)

The indices \(m \) in (15) relate to the following equation

\[
\hat{\bar{\epsilon}}_{\pm 1/2}(r) = \hat{\bar{\epsilon}}_{\pm 1}(r) - (l + 1/2) \hat{\bar{\epsilon}}_{0}(r),
\]

(17)

the indices \(p \), on the other hand, to

\[
\hat{\bar{\epsilon}}_{\pm l}(r) = \hat{\bar{\epsilon}}_{\pm}(r) + \left(\frac{l}{2} \right) \hat{\bar{\epsilon}}_{0}(r).
\]

(18)

The second index of (15) stands for the angular momentum quantum number. Fig. 1 shows the pseudopotentials of a few elements. With phosphorus, the splitting of the curves (17) and (18) is only weakly indicated for \(l = 1 \) and appears only in the form of a line thickening. With germanium, but in particular with tantalum, the relativistic bifurcation can be clearly seen. The characteristic points (15), marked by short strokes on the curves, were determined by means of the computer. The theoretical quantities represented in Fig. 2 to 10 originate from theory B, the experimental values from the encyclopaedia by Villars and Calvert.
Fig. 1. The pseudopotentials of phosphorus, germanium, and tantalum, computed by means of (17) and (18)
Fig. 2. Radius–radius diagram (in at. units). On the abscissa, $10 \cdot (1/2) (r_{\text{at.1}} + r_{\text{at.2}})$ is plotted, and on the ordinate, $10 \cdot (1/2) (r_{\text{m1}} + r_{\text{m2}})$. Solid diamonds represent compounds and alloys of two transition metals (TTT), crosses two simple metals (SS). Open diamonds represent the compounds and alloys of a transition metal and of a simple metal (ST).

Fig. 3. Radius–radius diagram. On the coordinates, the same quantities are plotted as in Fig. 2; however, not all compounds and alloys have been permitted here, but only those consisting of elements of the fourth, fifth, and sixth periods of the Periodic Table with the exception of the rare-earth elements. The symbols represent intervals of the melting temperature T_m in K.

Solid diamonds $T_m \geq 2028$,

solid squares $2028 > T_m \geq 1487$,

open diamonds $1487 > T_m \geq 946$,

open squares $946 > T_m \geq 405$,

crosses $405 > T_m$.
Fig. 4. Radius–radius diagram. On the coordinates, the same quantities are plotted as in Fig. 2. As in
Fig. 3, the diagram is limited to elements of the fourth, fifth, and sixth periods without lanthanides.
The symbols denote the space group and structure type of the crystal lattice. For more details, see Table 1.

[22]. Unless specified otherwise, the quantities are represented in at. units. In Fig. 2 to 4,
the same simple combination of the characteristic radii has each time been plotted on the
axes, on the abscissa the mean value of the radii for d-electrons and on the ordinate the
mean value of the radii for s-electrons. The last index of the quantities used for explaining
the figures denotes the type of atom. The varying number of measuring points in Fig. 3
and 4 is simply due to the fact whether the melting temperature and the lattice type are
known. Here, as in the other figures, no points were excluded. Fig. 2 and Fig. 3 show that
the types TT, ST, and SS are by no means randomly distributed. If, for example,
the theoretical computation yields a mean to high value for the mean of the radii for s-electrons
and a low value for that of d-electrons, we mostly have to do with TT with a higher melting
temperature. Above all in Fig. 3 and 4, the experimental points are clearly arranged in
clusters. Good predictions as to the lattice constants can be made from a radius–potential
diagram for s-electrons (see Fig. 5). Fig. 6 shows that, on lines with an identical lattice
structure, also the lattice structure can be predicted to a certain extent. Fig. 7 demonstrates
that the space group and structure type can be predicted for many areas of the theoretically
computed diagram. A similar representation for all lattices is given in Fig. 8. Certain lines
are dominated here by certain structure types, so that predictions are still possible in this
mixture of types without a separation into TT, ST, and SS. The properties can be predicted
with greater certainty by the combination of several diagrams. Many of these plots have
not been printed here for reasons of space. From the Bloch-Simons [6] orbital shell radii
r_s^{0} and r_p^{0}, two quantities, r_s and r_p, have formerly been defined

$$r_s = r_s^{(1)} + r_s^{(2)} \quad \text{and} \quad r_p = r_p^{(1)} - r_p^{(2)},$$

the numbers relating to two types of atoms, and

$$r_s^{0} = r_s^{(0)} - r_s^{(1)} \quad \text{and} \quad r_p^{0} = r_p^{(0)} + r_p^{(1)}.$$
Table 1

The assignment of symbols for the plots in which the symbols express the space group of the crystal lattice

<table>
<thead>
<tr>
<th>space group</th>
<th>structure type</th>
<th>symbol</th>
<th>description of symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fm3m</td>
<td>ClNa</td>
<td>■</td>
<td>solid square</td>
</tr>
<tr>
<td>Fm3m</td>
<td>Cu</td>
<td>□</td>
<td>open square</td>
</tr>
<tr>
<td>F43m</td>
<td>S2Zn</td>
<td>○</td>
<td>open circle</td>
</tr>
<tr>
<td>Fd3m</td>
<td>NaTl</td>
<td>△</td>
<td>right angle, tip pointing upward</td>
</tr>
<tr>
<td>Pm3m</td>
<td>CICs</td>
<td>●</td>
<td>solid diamond</td>
</tr>
<tr>
<td>P63/mmc</td>
<td>AsNi</td>
<td>●</td>
<td>solid circle</td>
</tr>
<tr>
<td>P63/mmc</td>
<td>Mg</td>
<td>○</td>
<td>open diamond</td>
</tr>
<tr>
<td>P6/mmc</td>
<td>S2Zn</td>
<td>○</td>
<td>right angle</td>
</tr>
<tr>
<td>Pnma</td>
<td>BFe</td>
<td>▼</td>
<td>tip pointing downward</td>
</tr>
<tr>
<td>Pnma</td>
<td>MnP</td>
<td>▲</td>
<td>solid triangle</td>
</tr>
<tr>
<td>P4/mmm</td>
<td>AuCu</td>
<td>▲</td>
<td>tip pointing upward</td>
</tr>
<tr>
<td>P4/mmm</td>
<td>CuTl</td>
<td>▼</td>
<td>solid triangle, tip pointing to the left</td>
</tr>
<tr>
<td>P43m</td>
<td>GeK</td>
<td>△</td>
<td>tip pointing to the right</td>
</tr>
<tr>
<td>P2₁,3</td>
<td>FeSi</td>
<td>▼</td>
<td>tip pointing to the left</td>
</tr>
<tr>
<td>Cmcm</td>
<td>BCr</td>
<td>△</td>
<td>upright cross</td>
</tr>
<tr>
<td>I4₁/mmm</td>
<td>W</td>
<td>△</td>
<td>oblique cross</td>
</tr>
<tr>
<td>I4₁/acd</td>
<td>NaPh</td>
<td>△</td>
<td>oblique cross with additional horizontal beam</td>
</tr>
</tbody>
</table>

According to [23], \(r_e^{(o)} \) corresponds to the p-s-p hybrids, the quantity \(r_e^{(v)} \), on the other hand, to the s-p \(\sigma \) hybrids. Analogously, based on our characteristic radii, we define the following quantities, the first one being a kind of size mismatch,

\[
R_e^{(v)} = \left| (r_{11} + r_{\text{m01}}) - (r_{12} + r_{\text{m02}}) \right|,
\]

with

\[
r_{11} = (r_{\text{m11}} + r_{\text{p11}})/2 \quad \text{and} \quad r_{12} = (r_{\text{m12}} + r_{\text{p12}})/2.
\]

A measure for the sum of the orbital nonlocality is obtained from

\[
R_e^{(o)} = |r_{11} - r_{\text{m01}}| + |r_{12} - r_{\text{m02}}|.
\]

In [19], it has been shown that, with the help of these dual coordinates, particularly good separations according to the crystal structure are possible. Fig. 9 serves here as a fairly good
Fig. 5. Radius–potential diagram with $10 \times (1/2) (r_{\text{Mg}} + r_{\text{O}})$ on the abscissa and $(1/2) (r_{\text{Mg}} + r_{\text{O}})$ on the ordinate. Only compounds and alloys of one simple and one transition metal (ST) each with NaCl lattices as symbols were plotted. These symbols represent the following intervals of the lattice constants a (in 10^{-10} m).

- Solid diamonds: $a \leq 6.3665$.
- Solid squares: $6.3665 > a \leq 5.8517$.
- Open diamonds: $5.8517 > a \leq 5.3369$.
- Open squares: $5.3369 > a \geq 4.8221$.

Fig. 6. Radius–potential diagram. The coordinates represent the same quantities as in Fig. 5. Also here, only ST has been plotted in symbols. The symbols denote the space group and structure type of the crystal lattice. For further explanations, see Table 1.
Fig. 7. Radius–potential diagram with 10 (1/2) \((r_{n1} + r_{m2})\) on the abscissa, but with \((1/2) (r_{n1} + r_{m2})\) on the ordinate. The symbols represent the lattice type of TT according to Table 1.

Fig. 8. Radius–potential diagram for d-electrons. On the abscissa, 10 (1/2) \((r_{n23} + r_{m21})\) is plotted, and on the ordinate (1/2) \((r_{n23} + r_{m21})\). In the representation, all lattices have been used. The symbols denote the space group and structure type of the crystal lattice. See Table 1.
Fig. 9. On the abscissa, R^2 is plotted, on the ordinate, R^2_{true}. The symbols represent the crystal lattices. For more details, see Table 1 example. For Fig. 10, a simple function F was used which results from $F = \frac{1}{2} (F_1 + F_2)$ and

$$F_x = 10 \frac{s_\alpha - 1}{8 - 1} (s_\beta - 1) v_{\text{true}}.$$ \hspace{1cm} (22)

s_α is the column in the Periodic Table, α is 1 or 2, depending on the type of atom. For compounds and alloys of two transition metals (TT), we observe an increase in the melting temperature with F. For higher temperatures, the areas covered by TT, ST, and SS are clearly separated.

Fig. 10. $T_m - F$ diagram. On the abscissa the melting temperature T_m is plotted in 100 $^\circ$C, on the ordinate the theoretically computed function F according to (22) in at. units. Solid diamonds represent TT, open diamonds ST, crosses SS.
4. Conclusions

After an introduction into the preparation of structure maps with semi-empirical theories, two pseudopotential theories, A and B, are compared, which are based on first principles and for which an optimum transferability to various systems was attempted. For theory B, the applicability is shown in figures. Characteristic quantities were determined for each pseudopotential curve. With the help of plots, space group and structure type of the crystals, the lattice constants, the melting temperature, and other physical quantities can be predicted. In theory B, also the pseudopotential curves for the d-electrons play a role, while in theory A, the influence of the d-electrons is only indirect, even for intermetallic compounds of two transition metals.

References

(Received August 1, 1990)